Differential expression of VuUCP1a and VuUCP1b in caupi under salt stress

Authors

  • Francisco Garantizado Universidade Federal do Ceará
  • José Costa Universidade Federal do Ceará
  • Ivan Maia Universidade Estadual Paulista
  • Dirce Melo Universidade Federal do Ceará

Keywords:

Salt stress, pUCP, Vigna unguiculata

Abstract

Salt stress affects growth and development of plants, inducing a variety of physiological and biochemical responses as an adaptation mechanism for survival. The plant uncoupling mitochondrial proteins (pUCPs) are able to dissipate the proton electrochemical gradient as heat and are encoded by a multigene family. They works as defence systems avoiding the formation of reactive oxygen species promoted by environmental stress. The aim of this work was to study gene expression of pUCPs (VuUCP1a and VuUCP1b) in roots and leaves from Vigna unguiculata seedlings under salt stress (100 mM NaCl). Seeds were germinated in the dark and after 3 days, the seedlings were transferred to Hoagland’s medium and grown for 3 additional days before being submitted to the stress condition. Roots and leaves were harvested at 0; 6; 12 and 24 hours after addition of NaCl for total RNA isolation and RT-PCR assays. Expression analysis by RT-PCR showed that VuUCP1a is constitutive in leaves and roots while VuUCP1b is expressed as tissue-dependent presenting a constitutive profile in leaves and a differential one in roots from seedlings under salt stress. The uniqueness of pUCP1 gene duplication in cowpea with differential expression suggest a role of this enzyme in the adjustment of salt stress as well as promotes this species as an attractive model to understand the role of pUCP gene members in plants.

Downloads

Published

2011-04-27

Issue

Section

Crop Science