ROLE OF BIG DATA ANALYTICS FOR CUSTOMER SATISFACTION IN MEDIATING SERVICE SUPPLY CHAIN MANAGEMENT AND OPERATIONAL PERFORMANCE
DOI:
https://doi.org/10.19094/contextus.v17i3.42468Keywords:
Service supply chain management; operational performance; big data analytics; customer satisfactionAbstract
The aim of the study was to examine the mediating effect of big data analytics (BDA) as a tool in the relationship between service supply chain management and operational performance in the pursuit of customer satisfaction. To this end, an exploratory descriptive research was conducted with a sample of 125 managers of residential and building service and condominium companies in the metropolitan region of São Paulo. The data, treated by descriptive statistics and structural equation modeling, revealed that BDA partially mediates the relationship between service supply chain management and operational performance, which in turn positively influences customer satisfaction. From these results it can be concluded that BDA is an important management tool for facilitating the execution of service activities in residential condominiums in order to foresee problems in equipment used by customers, such as elevators, hydraulic pumps, automatic gates and access monitoring cameras, thereby improving the operational performance of condominium service companies and contributing customer satisfaction with service provision.
References
ANDERSON, E. W. Customer satisfaction and word-of-mouth. Journal of Service Research, v. 1, n. 1, p. 5-17, 1998. <https://doi.org/10.1177/109467059800100102>
BALLOU, R. H. The evolution and future of logistics and supply chain management. European Business Review, v. 19, n. 4, 2007.
BALTACIOGLU, T.; ADA, E.; KAPLAN, D. M.; YURT, O.; KAPLAN, C. A new framework for service supply chains. The Service Industries Journal, v. 27, n. 2, 2007.
BLOEMER, J. M. M.; KASPER, H. D. P. The complex relationship between consumer satisfaction and brand loyalty. Journal of Economic Psychology, v. 16, n. 2, p. 311-329, 1995.
BOWERSOX, D. J.; CLOSS, D. J.; COOPER, M. B. Gestão da cadeia de suprimentos e logística. 2. Ed. Rio de Janeiro: Elsevier, 2007.
BROWN, S.; LAMMING, R.; BESSANT, J.; JONES, P. Administração da produção e operações. Rio de Janeiro: Editora Campus / Elsevier, 2006.
CAO, M.; ZHANG, Q. Supply chain collaboration: Impact on collaborative advantage and firm performance. Journal of Operations Management, v. 29, n. 3, 2011, p. 163-180. <https://doi.org/10.1016/j.jom.2010.12.008>
CARVALHO, M. F. A Importância da Informação no Desempenho da Cadeia de Suprimentos – Um Estudo Exploratório. In: XII SIMPEP. Anais… Bauru, SP, Brasil, 07 a 9 de novembro de 2005.
CHEN, C. P.; ZHANG, C. Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314-347, 2014.
CHIN, W. W. Issues and Opinion on Structural Equation Modeling. MIS Quarterly Management Information Systems Research Center. University of Minnesota, v. 22, n. 1, p. vii-xvi, Mar. 1998.
CHOI, T. M.; LAMBERT, J. H. Advances in risk analysis with big data. Risk Anal, 37, p. 1435-1422, 2017.
CHOU, M. C. et al. Analysis of a software-focused products and service supply chain. IEEE Transactions on Industrial Informatics, v. 2, n. 4, 2006.
COHEN, J. Statistical Power Analysis for the Behavioral Sciences. 2. Ed. New York: Psychology Press, 1988.
COMBS, J. G.; CROOK, T. R.; SHOOK, C. L. The dimensionality of organizational performance and its implications for strategic management research. Research Methodology in Strategy and Management, v. 2, n. 5, p. 259-286, 2005.
CONECTON. Consumo de água, gás, energia, controle de iluminação e muito mais. 2017. Disponível em <http://conectcon.com/2017/04/17/automacao-condominios/>. Acesso em: 20/05/2018.
COSTA, M. R.; TORRES, N. Gestão da cadeia de suprimentos de serviços: uma análise das atividades operacionais logísticas de empresas exibidoras de filmes de longa-metragem de Belo Horizonte. GEPROS. Gestão da Produção, Operações e Sistemas, v. 9. n. 3, p. 61-78, 2014.
DILLMAN, D. A. Mail and internet surveys: the tailored design method. John Wiley & Sons, Inc. 2th edition. 464p. 2000.
DONALD J. B.; DAVID J. C.; COOPER M. B.; JOHN C. B. Gestão logística da cadeia de suprimentos. Porto Alegre: AMGH, 4. Ed., 2014.
DYER, J. H.; SINGH, H. The relations view: co-operative strategy and sources of inter- organizational competitive advantage. Academy of Management Review, v. 23, p. 660-679, 1998.
ELLRAM, L. M.; TATE, W. L.; BILLINGTON, C. Understanding and managing the services supply chain. Journal of Supply Chain Management, v. 40, n. 4, 2004.
FAVARETTO, F. Gerenciamento de informações em cadeias de prestações de serviços. Perspectivas em gestão & conhecimento, v. 2, n. 1, p. 3-20, 2012.
FLYNN, B. B.; HUO, B.; ZHAO, Z. The impact of supply chain integration on performance: A contingency and configuration approach. Journal of Operations Management, v. 28, p. 58-71, 2010.
HAIR, J. F.; HULT, G. T.; RINGLE, C. M.; SARSTEDT, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Los Angeles: Sage Publications, 2014.
ITTMANN, H. W. The Impact of big data and business analytics on supply chain management. Journal of Transport and Supply Chain Management, v. 9, n. 1, p. 1-9, 2015.
KIRON, D.; PRENTICE, P. K.; FERGUSON, R. B. The analytics mandate. MIT Sloan Management Review, v. 55, n. 4, p. 1‐25, 2014.
KOTLER, P. Administração de Marketing. 10 ed. São Paulo: Pearson Education do Brasil, 2000.
KRITHIKA, V; KAUR, A.; SEKARAN, C.; RAJENDRAN, C. Developing a conceptual relationship between web service supply chain entities. In: IEEE World Congress on Services. Proceedings… 2011.
LI, B.; LI, Y. Internet of things drives supply chain innovation: A research framework. The International Journal of Organizational Innovation, v. 9, n. January 2017, p. 71-93, 2017.
MAJEED, M. A. A.; RUPASINGHE, T. D. Internet of things (IoT) embedded future supply chains for industry 4.0: An assessment from an ERP-based fashion apparel and footwear industry. International Journal of Supply Chain Management, v. 6, n. 1, p. 25-40, 2017.
MALHOTRA, N. K. Pesquisa de Marketing: Uma Orientação Aplicada. Porto Alegre: Bookman, 7ª edição. 800p. 2019
MANYIKA, J.; CHUI, M.; BROEN, B.; BUGHIN, J.; DOBBS, R.; ROXBURGH, C.; BYERS, A. H. Big Data: the next frontier for innovation, competition, and productivity, 2011.
MILAN, G. S.; DE TONI, D. A. A construção de modelo sobre a retenção de clientes e seus antecedentes em um ambiente de serviços. Revista Eletrônica de Administração, v. 72, n. 2, p. 433-467, 2012.
MILAN, G. S.; EBERLE, L.; CORSO, A.; TONI, D. A Qualidade em Serviços e a Satisfação de Clientes: Comparação entre a percepção de alunos de graduação e de pós-graduação de uma IES. Revista de Administração UFSM, v. 8, n. 3, p. 415-437, 2015.
MILLER, J. G; ROTH, A. V. A taxonomy of manufacturing strategies. Management Science, v. 40, n. 3, p. 285-304, 1994.
MÜLLER, S. D.; JENSEN, P. Big data in the Danish industry: application and value creation. Business Process Management, v. 23, n. 3, p. 645-670, 2017.
PAULRAJ, A.; CHEN, I. J. Strategic buyer-supplier relationships, information technology and external logistics integration. The Journal of Supply Chain Management, p. 3, 2007.
PIRES, S. R. I. Gestão da cadeia de Suprimentos: conceitos, estratégias, práticas, e casos – Supply Chain Management. São Paulo: Editora Atlas, 2ª. Edição, 7. Reimpressão, 2013.
PIRES, S. R. I.; CARRETERO-DÍAZ, L. E. Gestión de la cadena de suministros. McGraw Hill, Madrid, 2007.
PORTER, M. E. Competitive Advantage. New York. The Free Pass, 1985.
PORTER, M. E.; HEPPELMANN, J. E. How Smart, Connected Products are Transforming Companies. Harvard Business Review. October 2015.
PRATES, W. O. Estatística para ciências sociais aplicadas I. Salvador: UFBA, 156p., 2017.
RODRIGUEZ, L.; CUNHA, C. Impacts of Big Data Analytics and Absorptive Capacity on Sustainable Supply Chain Innovation. A Conceptual Framework. LogForum, v. 14, n. 2, p. 151-161, 2018.
ROSENZWEIG, E. D.; EASTON, G. S. Tradeoffs in manufacturing? A Meta‐analysis and critique of the literature. Production and Operations Management, v. 19, p. 127-141, 2010.
ROSSMANN, B.; CANZANIELLO, A.; GRACHT, H.; HARTMANN, E. The future and social impact of big data analytics in supply chain management: results from a Delphi study. Technological Forecasting & Social Change, v. 130, p. 135-149, 2018.
SANDERS, N. R. How to use big data to drive your supply chain. California Management Review, v. 58, n. 3, 2016.
STARR, M. K. Changing agendas for operations management. Gestão & Produção, v. 12, n. 13, São Carlos, 2005.
SUKATI, I.; HAMID, A. B.; BAHARUN, R.; YUSOFF, R. M. The study of supply chain management strategy and practices on supply chain performance. Procedia – Social and Behavioral Sciences, v. 40, p. 225-233, 2012.
TONI, D.; MAZZON, J. A. Teste de um modelo teórico sobre o valor percebido do preço de um produto. Revista de Administração, v. 49, n. 3, p. 549-565, 2014.
WAMBA, S. F.; GUNASEKARAN, A.; AKTER, S.; REN, S.; DUBEY, R.; CHILDE, S. Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, v. 70, 2017, p. 356-365. <http://dx.doi.org/10.1016/j.jbusres.2016.08.009>
WANG, Y.; WALLACE, S. W.; SHEN, B.; CHOI, T. Service supply chain management: A review of operational models. European Journal of Operational Research, v. 247, p. 685-698, 2015.
WETZELS, M.; ODEKERKEN-SCHRÖDER, G.; OPPEN, C. VAN. Using PLS Path Modeling for Assessing Hierarchical Construct Models: Guidelines and Empirical Illustration. MIS Quarterly, v. 33, n. 1, p. 177-195, 2009.
WILLIAMSON, O. E. Strategy Research: governance and competence perspective. Strategic Management Journal, v. 20, n. 12, p. 1087-10108, 1999.
ZEITHAML, V. A.; BITNER, M. Marketing de Serviços: a empresa com foco no cliente. Porto Alegre: Bookman, 2ª edição, 2003.
Downloads
Published
How to Cite
Issue
Section
License
The authors, while doing the submission, accept the notice below:
We authors hold the copyright related to our paper and transfer Contextus journal the right for the first publication with a Creative Commons’ international license of the modality Attribution – Non-commercial 4.0, which in turn allows the paper to be shared providing that both the authorship and the journal’s right for initial release are acknowledged.
Furthermore, we are aware of our permission to take part in additional contracts independently for non-exclusive distribution of the version of our work published in this journal (e.g. publishing it in an institutional repository or as a book chapter), while acknowledging both the authorship and the journal’s initial publication.
We also certify that the paper is original and up to this date has not been released in any other journal, Brazilian or of another nationality, either in Portuguese or another language, as well as it has not been sent for simultaneous publication in other journals.
Last, we not only know that plagiarism is not tolerated by Contextus but also certify the paper presents the sources of passages from cited works, including those authored by ourselves.